学术报告202403-关于南京大学朱马光助理教授/特聘研究员学术报告的通知

发布者:史杨审核:史杨终审:王勇时间:2024-04-04浏览:44

报告题目:抗辐照碳纳米管晶体管与集成电路

时间:202447日下午400-530

地点:玉泉校区教十一515教室

报告人:朱马光,南京大学集成电路学院 助理教授/特聘研究员


随着航天事业的飞速发展,载人登月和太阳系探测等新一代宇航任务对电子器件的性能提出了更高的要求,而空间中严酷的高能粒子-宇宙射线产生的电离总剂量、单粒子以及位移损伤复合辐照环境是宇航芯片面临的主要威胁1 。现有研究显示,碳基电子器件具备远超传统硅基器件的抗电离总剂量辐照能力2-4,可满足深空探测任务对芯片寿命长达数年乃至数十年的需求,但是关于碳基器件单粒子效应、位移损伤效应以及复合辐照效应等的研究未见相关报道,因此我们难以系统评估碳基器件和集成电路的综合抗辐照能力。

本工作基于碳纳米管晶体管和静态随机存储器单元,利用激光辐照源测试碳基集成电路抗单粒子辐照能力,利用重离子辐照源测试碳基集成电路抗位移损伤能力,利用Co-60伽马射线源测试碳基集成电路抗电离总剂量辐照能力,系统揭示了碳纳米管场效应晶体管中的总剂量辐照、单粒子和位移损伤三种辐照损伤机理,首次探索了碳纳米管电子器件综合抗辐照效应能力5。实验结果显示,所构建的碳纳米管晶体管和静态随机存储器电路可承受104 MeV cm2 mg-1等效激光单粒子辐照,2.8×1013 MeV g-1的位移损伤辐照以及2 MradSi)的电离总剂量辐照,其综合抗辐照能力优于硅基器件四倍以上,充分展示了碳纳米管电子器件在抗辐照领域的应用潜力。


朱马光,南京大学集成电路学院助理教授/特聘研究员,姑苏青年创新领军人才。本科毕业于南京大学现代工程与应用科学学院,2020年获北京大学前沿交叉学科研究院理学博士学位,师从彭练矛院士。2021-2022年于北京大学碳基电子学研究中心张志勇—彭练矛课题组任博雅博士后。多年来围绕后摩尔时代新型低维纳米材料制备、高性能碳纳米管集成电路、抗辐照集成电路以及柔性可穿戴电子器件方向开展了多项原创工作。至今在包括Nature Electronics, Advanced Materials等期刊发表多篇学术论文,一项研究成果获得2020-2021年度苏州市自然科学优秀学术论文一等奖。



Comprehensive Radiation Effect Tolerance in Carbon Nanotube Integrated Circuits

Maguang Zhu 1,2*, Zhiyong Zhang 2*

1School of Integrated Circuits, Nanjing University, Nanjing, 210033, China

2Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing100871, China

*Email: mgzhu@nju.edu.cn; zyzhang@pku.edu.cn


Carbon nanotube (CNT) field-effect transistors (FETs) have been considered ideal building blocks for radiation-hard integrated circuits (ICs), the demand for which is exponentially growing, especially in outer space exploration and the nuclear industry. Many studies on the radiation tolerance of CNT-based electronics have focused on the total ionizing dose (TID) effect, while few works have considered the single event effects (SEEs) and displacement damage (DD) effect, which are more difficult to measure but may be more important in practical applications. Measurements of the SEEs and DD effect of CNT FETs and ICs are first executed and then presented a comprehensive radiation effect analysis of CNT electronics. The CNT ICs without special irradiation reinforcement technology exhibit a comprehensive radiation tolerance, including a 1×104 MeVcm2 mg-1 level of the laser-equivalent threshold linear energy transfer (LET) for SEEs, 2.8 × 1013 MeV g-1 for DD and 2 Mrad (Si) for TID, which are at least four times higher than those in conventional radiation-hardened ICs. The ultrahigh intrinsic comprehensive radiation tolerance will promote the applications of CNT ICs in high-energy solar and cosmic radiation environments.