中-瑞合作埃科学研究中心系列研讨会通知

发布者:系统管理员审核:fd 作者:fd终审:发布时间:2007-11-15浏览次数:4985

-瑞合作埃科学研究中心系列研讨会之一
——分子筛和介空材料的合成与结构表征
   目:HRTEM structural study of micro- and meso-porous crystals
主讲人:Professor Osamu Terasaki
   间:2007111914:00
   点:曹光彪楼 617
内容简介:The application of HRTEM to the study of open-structures itself constitutes a turning point in solid-state and materials science. For example, no other technique can cope with the structural problems posed by mesoporous silica crystals in which the silica walls themselves are amorphous but the arrangement of the cages, channels and pores is crystallographic as a “cavity crystal”.
   “Space filling and partition” is a very important concept in understanding and explaining the self-assembly mechanism of micro- and meso-porous crystals. Soap bubbles fill three dimensional (3d-) space freely and will arrange themselves to make the total area of the interfaces between the bubbles minimum. When three bubbles meet, a line is formed as the common edge of the bubbles by deforming their spherical shapes. A maximum of four soap bubbles can meet at a point, where four lines connected with the tetrahedral angle, cos-1(-1/3). This is similar to zeolite framework structure, where Si atoms take the tetrahedral positions and the lines correspond to the Si-O bondings. For a long time the Kelvin’s partition, which is known as zeolite SOD framework type, was believed to be a solution for arrangement of the total area of the interfaces between the cells of a uniform volume is a minimum. More than ten years ago, it was shown that another zeolite framework-type called MEP (melanophlogite, SG: Pm-3n), which has two kinds of cells, dodecahedron (12-hedron) and tetrakaidecahedron (14-hedron) of equal volume, surpassed Kelvin’s partition by 0.3 % in area. This MEP is gas clathrate type I (type II has Fd-3m structure) and also classified as one of tetrahedrally close packed (tcp) structures, whose bondings are exclusively tetrahedral like zeolites. 
  In the meeting, I will start from (i) “Cluster Crystals” formed in the micropores in zeolites, and move on HRTEM structural study of micro- and meso-porous crystals by taking (ii) Study of defect, sructural solution and surface structure of zeolite Beta, (iii) Basic principle to solve a structure of three-domensional mesoporous crystal, and (iv) Recent structural topics related to micro- and mesoporous crystals.
 
  Osamu Terasaki教授简介:Osamu Terasaki1967年在东本大学(仙台,日本)物理系获得硕士学位,并留校任教。1982年作为英国皇家协会的客座研究员,他在剑桥大学从事沸石精细结构研究。1987年他被聘为隆德大学(瑞典)无机化学系客座教授。1995-2000年,他被选作为日本科技省CREST计划之一的微孔材料中的新型阵列团簇:合成,结构和物理性能的研究主任。2003年,他成为斯德哥尔摩大学(瑞典)阿列纽斯实验室结构化学的负责人。他分别获得了中国政府的最高荣誉友谊奖,国际沸石协会的Donald W. Breck奖和亚历山大洪堡基金的洪堡-研究奖。
 
 
 
 
 
 
-瑞合作埃科学研究中心系列研讨会之二
——分子筛和介空材料的合成与结构表征
   ANIONIC SURFACTANT TEMPLATING ROUTE FOR SYNTHESING OF MESOPOROUS SILICA
主讲人车顺爱 教授
   2007111915:00
   曹光彪楼 617
内容简介A novel templating route for preparing mesoporous silicas has been demonstrated based on the self-assembly between anionic surfactants and inorganic precursors by using aminosilane or quaternized aminosilane as co-structure-directing agent (CSDA), which is different from the previous pathways. The alkoxysilane site of CSDA is co-condensed with inorganic precursors; the ammonium site of CSDA, attached to silicon atoms incorporated into the wall, electrostatically interacts with the anionic surfactants to produce well-ordered anionic surfactant templated mesoporous silicas (AMS). This templating route has given rise to a variety of mesostructures such as tetragonal (P42/mnm), hexagonal (P63/mmc, p6mm), cubic (dis-continuous Pm3n, Fd3m, Fm3m; bi-continuous Im3m and Pn3m, etc.), and lamellar mesophases. AMS, involving the co-structure-directing effect, has attracted many scientists recently due to its outstanding characteristics, including the diversity of the mesophases that can be easily controlled and the eligibility to form chiral mesoporous silica. In particular, the interaction between the surfactant and the CSDA produces a uniform distribution of the organic groups, and a regular array of the group will be formed following the arrangement of the surfactant. This enables the functional groups condensed onto the pore surface in the expected ratios based on both a stoichiometry of the molecule and the geometric arrangement of the surfactant. Therefore, the study on the formation of AMS has great significance in theory and practice.

 
  车顺爱教授简介:车顺爱博士是上海交通大学化学化工学院化学系教授。同时她也是上海交通大学手性化学研究所的负责人。车教授在吉林化工学院获得工学学士学位后,在吉林工学院获得科学硕士学位。她于2002年在横滨国立大学工程学系材料科学&化学工程部获得博士学位,研究的题目是介孔材料。在横滨国立大学化学工程学院完成关于多孔碳和硅在催化剂中应用的博士后研究后,她于2004年加入上海交通大学。发现了阴离子表面活性剂模板合成介孔硅的方法,并第一次合成了手性多孔材料。车教授的研究的总目标是发展新型介孔材料以及它们在纳米医学和生物工程中的应用。更多的信息可查看车教授的主页:http://chesa.sjtu.edu.cn
 
 
 
 
 
浙江大学材料与化学工程学院
浙江大学埃科学研究中心(筹)
联系人:韩高荣教授